Revealing Differences in Designer's and Users'Perspectives:

A Tool-supported Process for Visual Attention Prediction for Designing HMIs for Maritime Monitoring Tasks

Sebastian Feuerstack Bertram Wortelen

OFFIS Institute for Information Technology Oldenburg, Germany

Email: feuerstack@offis.de

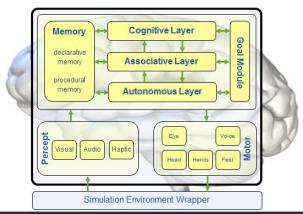
Monitoring Systems

Why do we need to learn about the monitoring behavior?

Monitoring is done to observe a system state in order to predict future states of the system.

Monitoring happens for instance while: driving a car, flying a plane, or

- steering a vessel:
 - Monitoring tasks consume most of the time spent
 - 70%-80% of accidents happen because of missing access to information


Monitoring Behavior

Ways to learn about the monitoring behavior of a user

- 1. Eye-Tracking Technology
 - Trustworthy, noisy data: PDT, Traces
 - Considers system dynamics
 - Requires Prototype, realistic Setup, several Participants, High Effort (Time + Costs)

- Comparative data: PDT
- "Abstract", mostly static system
- No prototype, few experts, low effort
- Model can be inspected
- "Tricky to use"

Attention Prediction

by running a user model in a cognitive architecture

- ► A cognitive architecture can be understood as a
 - "generic interpreter" that
 - executes formalized procedures of a human operator
 - In a physiological and psychological plausible models.
- Adaptive Information Expectancy Model (Wortelen, 2014)
 - Probability P of switching to goal g among a set of goals:

$$P(g) = \frac{u_g}{\sum_{q_i \in G} u_{g_i}} \cdot \frac{v_g}{\sum_{q_i \in G} v_{q_i}} - \text{expected new information, } v^{\underline{g}_i} \text{value of information... of an formation source (IS)}$$

U

in

Basic Research Questions

for performing a qualitative study

Are non-experts in cognitive modelling able to generate visual attention predictions?

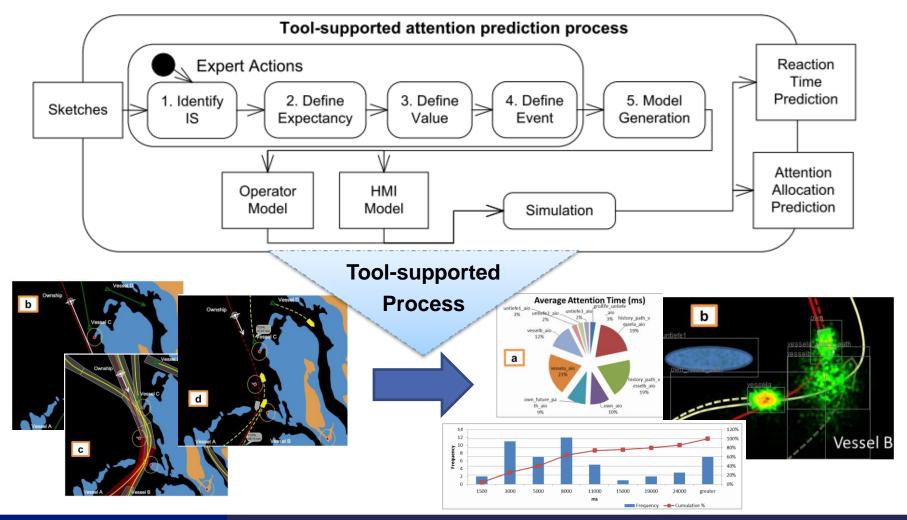
 H_1 : Users without specific prior knowledge **are able to use the HEE** and end up with results **in a reasonable amount** of time

 H_2 : The **variations** between the models specified by the participants are small

How do helpful visualizations of the results look like and for what are they good for?

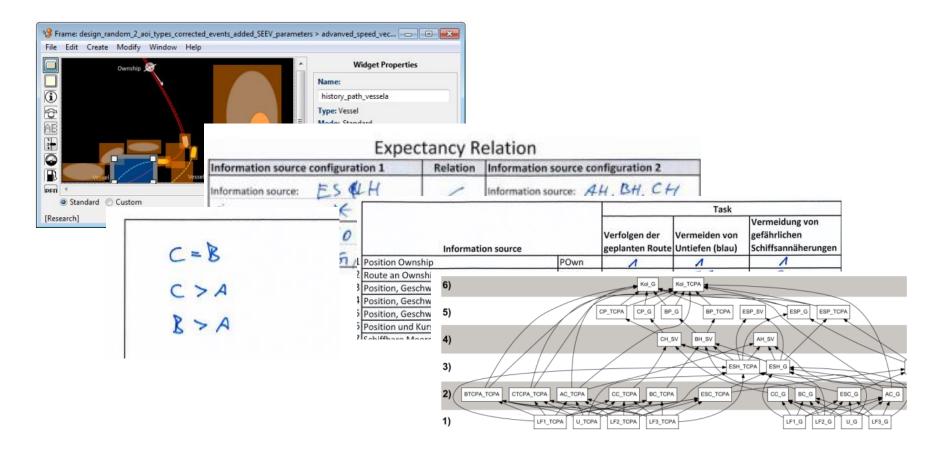
 H_3 : The result visualization of the HEE is clear:

*H*_{3a}: for a **pie chart** -> average attention allocation prediction


 H_{3b} : for a **heatmap** -> average attention allocation distribution

 H_{3b} : for a **histogram** -> avg. reaction time prediction

Expectancy and Value Definition


by following a structured, tool supported process

Demonstration Video

... of the entire tool supported avg. attention prediction process

Explorative Study

The study setup

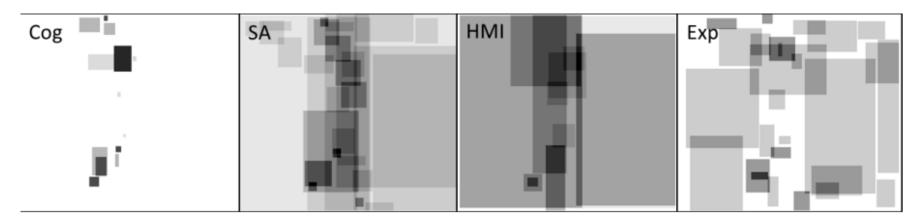
► Four Subject Matter Experts

- Cognitive Modelling Expert
- Interface Designer that created the designs
- Expert in Analyzing Situation Awareness
- Maritime Domain Expert (ship master)
- All Experts (where video-taped)
 - received a short scripted introduction (~10 min)
 - performed the entire process (questions allowed)
 - where asked for feedback after each step
 - analyzed the results (visualizations)

Results

about required modelling time + prior knowledge required

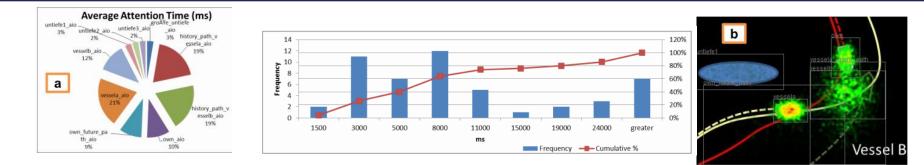
Subject	IS Identification		Expectancy		Relevance		Entire Modelling Time	Entire study
Cog	3	23	6	16	1	3	42	94
SA	6	70	3	55	1	7	132	112
HMI	5	52	2	53	1	7	112	105
Exp	6	90	3	54	1	16	160	231


► Modelling Mean Time: 2:02h

- Cog. Exp. felt most familar, had fewest IS (18)
- Sit. Awareness Exp. had most IS marked (47)
- Maritime Exp. commented a lot for IS (90 min)
- All experts were able to get results in a reasonable amount of time.

Results

about model variations


130 Information Sources over 3 designs

- 4 identical: beacons, ownship pos, high danger arega
- 8 marked different, 26 only marked by one expert,
- Model similarity measure: RSID
 - 10 most similar have clear boundaries
 - 11th most similar area of danger w/o clear borders.
- We found no support for model similarity

Results

understandability of result visualization

▶ Pie chart

- How does an optimal attention distribution look like?
 - 3 focus on a few IS only vs. HMI balanced distrib.

► Histogram

- Figured out to be complicated, even with example
- ► Heatmap
 - Matched expectencies, all found arguments for their prefered design.

12 Conclusions

based on the qualitative study

- Tool-based attention distribution predictions can be generated even by non-experts in cognitive modelling in a reasonable short amounts of time
- Information Source Markup vary -> Predictions as well
 - Does not affect the user's expectation
 - Variance affected by HMI with few element boundaries
- Visualizations
 - A pure attention distribution presented as a pie-charts has little value
 - Histograms were hard to understood for the audience
 - Heatmaps were easily understood and support analysis
 - What can a HMI designer learn from the operator's heatmap?

Questions ?

Thanks for your attention

Sebastian Feuerstack feuerstack@offis.de