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Abstract. Monitoring behavior is usually measured by performing studies in that eye-

movements of operators monitoring a real system are recorded. Modern eye-tracking 

systems generate heat maps from recorded data. Areas of interest and the corre-

sponding attention distribution can then be derived from the heat maps. We argue that 

recent progress in research indicates that psychological and physiological plausible 

human behavior models can often substitute time-consuming eye-tracking studies. Fur-

ther on, with prediction models and the right tooling, heat maps can already be gener-

ated in early design phases: based on design sketches instead of running prototypes. 

We present a case study in the maritime domain in that experts predicted and analyzed 

their monitoring behavior. We argue that with the right tooling even non-experts will be 

able to predict their monitoring behavior. Enabling easy access to monitoring behavior 

prediction for everyone will improve future HCI design.  

1 Introduction  

Supervision and monitoring of complex systems is one of the main activities of 

an operator in a safety-critical environment such as air traffic control rooms, air 

plane cockpits, or ship bridges. More and more systems like cars, our office and 

home environments are getting smarter and act autonomously on behalf of us. 

This changes our role from being in active control to being there to observe and 

understand what is going on. 

This has an impact on interface design. Being aware of how a design change 

might affect the human monitoring behavior is important information. Today the 

human monitoring behavior is often analyzed by recording eye movements, 

which requires observing humans controlling a working prototype of an interface 

design. We argue that psychological and physiological plausible human behavior 

models can often substitute time-consuming eye-tracking studies, can be earlier 

performed based on design sketches, and, if supported by a tool can also be per-

formed by non-experts. In fact, analyzing and predicting human monitoring be-

havior has been a research topic for several decades. In the mid of the 20th centu-

ry a series of studies were conducted to analyze monitoring behavior of fighter 

jet pilots [3] in order to design cockpits with an optimized layout.  
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Since then, several models have been developed to predict human monitoring 

behavior in workplace environments like control rooms, cockpits, etc. In these 

environments the human behavior is strongly shaped by the tasks of the operator. 

A common prediction model assumption is, that humans try to perform tasks in 

an optimal way [6, 2, 8, 7, 5, 10, 1, 13]. Nearly all of these models argue that op-

timal monitoring behavior is based on knowledge of the probability distribution 

of information events for each information source and knowledge about the value 

of perceiving information events or respectively the costs of missing events. 

Wickens et al. [10] describe this as the two knowledge-based forces expectancy 

and value (of information events) that affect attention distribution. Besides these 

forces there are extrinsic factors like salient information events and the effort as-

sociated with sampling an information source that can lead to a potentially nega-

tive deviation from optimal monitoring [10, 9]. However, with sufficient training 

the knowledge-based factors should explain the majority of variance in monitor-

ing behavior [5, 11]. 

Even though there is a vast knowledge base on monitoring theory, the above 

mentioned models are typically only used by human factors experts, because in 

order to use any of the above mentioned models to predict optimal monitoring 

behavior, a quantification of expectancy and value coefficients for each infor-

mation source is required. We believe that this is a barrier for a more wide-spread 

adoption of attention models in industrial practice and we believe that a suitable 

software tool can enable non-experts to do this task. Furthermore we believe that 

even if the modeling predictions are not very accurate the modeling process itself 

is useful for explicitly extracting the knowledge of experts in a structured way. 

In this contribution we present a tool for the quantification of value and expec-

tancy coefficients for a given set of information sources. These coefficients can 

directly be used for the value and expectancy factors of Wickens’ SEEV [10] and 

A–SA [11] models or the recent implementations of the SEEV model in the cog-

nitive architectures CASCaS [12] and MIDAS [4]. The next section describes a 

case study for monitoring behavior prediction in the maritime domain that was 

partially tool-supported. Based on the experiences gained, Section 3 proposes a 

complete tool-supported prediction process to facilitate the quantification of co-

efficients that is targeted also to non-experts. Section 4 summarizes our position. 

2 Predicting Maritime Chart Monitoring Behavior  

Three different design variations for a nautical chart display were evaluated to 

test the effect that offering a new kind of information has on operator’s monitor-

ing. Four experts with different backgrounds participated in this qualitative study 

[3]. All were able to understand and successfully perform the process of generat-
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ing attention predictions. Fig. 1 illustrates the steps that the participants per-

formed. In the first step, which already was tool-supported, they visually marked 

all sources of information (IS) on each design sketch. Different to what we ex-

pected, a high amount of IS were identified (between 18 and 47) and it figured 

out hard for them to remember all of them in the subsequent steps. We therefore 

supported them by a list with all IS identified. We also introduced abbreviations 

for each IS. 

The second step (expectancy and value identification of all IS) was performed 

manually by filling paper forms (c.f. Fig. 1b). The expectancy of information 

events occurring in an IS was identified by mathematical relations (“<”: greater, 

“>”: smaller, and “=”: identical) between IS that are relevant for a predefined set 

of tasks. For example the relation depicted in Fig. 1b states that IS “ESH” is ex-

pected to provide less new information than IS “AH”, “BH”, or “CH” (for all de-

sign variants). Since the same IS sometimes occurred on more than one design, 

with each IS also the corresponding design name was stated in the relation and 

we introduced a “*” operator, which could be used to refer to an IS on all de-

signs. In a similar way a “*” operator can also be used to refer to all ISs on a spe-

cific design.  

Unfortunately due to high number of ISs and complexity of the relation, one 

participant created an inconsistent relation that we were not aware of during the 

study. We could observe that all participants had trouble with the “mathematical” 

way of specifying the relation: It took them time to get comfortable with the no-

tation and some required help to correctly write down what they intend to say. 

After a participant was finished with defining the relation, we systematically 

walked though all IS identified and asked if this IS has or needs to be considered 

in the relation. This was done to ensure that the participant has at least considered 

all IS as candidates for including them in the relation. In a similar way, partici-

pants rated operator tasks by creating a task relation based on the task value. Ad-

ditionally the relevance of an IS for a certain task was rated as either “necessary”, 

”helpful”, or ”not relevant” on a form. All forms were then transcribed into an 

a) 

 

b) 

 

Fig. 1.  (a) Tool-supported process to predict operator’s attention allocation. It was executed by 

the HMI designer and the operator [3]. (b) Paper form to specify expectancy relation. 
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Excel table. Expectancy and value coefficients were calculated using the lowest 

ordinal algorithm [6, 15, 13], which derives the coefficients from the rank order 

of the IS in the expectancy relation, respectively the task in the task value rela-

tion.  

The predictions were generated in a reasonable amount of time (between 42 

and 160 minutes modeling time, without transcription time). Between 44% and 

54% of this time was spent on identifying the expectancy relations, values of 

each IS, and by filling the paper forms. The next section details the tool-support 

and states how we considered the study observations for implementing a com-

plete tool-supported attention prediction process. 

3 Towards a structured, tool-driven process to compute 
attention predictions  

We think that a complete tool-driven attention prediction process can resolve all 

issues that required our intervention in the maritime study, will reduce the overall 

modeling time, and also will enable non-experts to create attention predictions. 

The IS identification step was already tool supported in the study, thus we will 

focus on the tool-based generation of the expectancy and value coefficients. 

Based on the time measurements of the study the former one required most parts 

of the modeling time for all participants, whereas the value definition only took 

8.2 minutes on average [3]. 

We decided for a two-step approach to define the expectancy relations: First, 

the user is asked to roughly build up a hierarchy of IS by dragging them from a 

list (Fig. 2c) into a hierarchy (Fig. 2b). Relations are automatically created while 

the hierarchy is established (Fig. 2d - for each two consecutive layers in the hier-

archy a relation statement is created). In the middle of each relation statement 

there is a button indicating the current operator that can be clicked to toggle be-

tween “<”, ”>”, and ”=”. Second, new statements can be added and existing ones 

can be updated by directly editing the relation list of relation statements (Fig. 

2d). The list of all IS (which is the source for dragging out “IS”) can be sorted 

alphanumerical, per design (like shown in Fig. 2c) and most importantly can be 

sorted by “usage” to ease identifying IS that have not been defined in a relation 

statement so far. Inconsistent relation statements are instantly highlighted red 

(e.g. the last one in Fig. 2d).  

We observed during the study that the participants intuitively grouped similar 

IS logically to reduce the writing effort (e.g. all “lighthouses” or all “shoals” in 

the study). Therefore we introduced IS grouping support to the tooling: The se-

lection and dragging of several IS from the IS list (Fig. 2c) ends up in a popup 
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window (Fig. 2a) enabling a fine grained selection of the designs (columns) that 

should be part of a group. Additional, a group name can be defined (e.g. 

“own_ship” in Fig. 2a) that is then used in the relations (Fig. 2d – groups are 

identified by square brackets). Having the mouse pointer hovering above a group 

name or any other shortcut operator (like the “*” operator in Fig. 2d that sums up 

all IS from Design “G”), a tooltip shows all IS inside the group. 

For the definition of the IS, we kept the idea of the paper form that used a rel-

evance matrix to rate the value of each IS for a certain task with either “Neces-

sary”, “Helpful”, or “Not Relevant” (Fig. 2e). Since the study participants were 

already fast with the rating process, we only added a coloring scheme to ease the 

identification of IS that have not been rated and also to support the user in per-

ceiving, which tasks require a lot of IS or which IS is relevant for many tasks. 

After the relations and relevance matrix have been defined the consistency of 

relations and matrix are automatically checked. Then the expectancy and value 

coefficients are calculated and fed into the following process step for creating the 

virtual agent. Manual transcription is no longer required. Up to this point the user 

worked solely with the mouse, except for naming the groups. The need for writ-

ing down the relation in the mathematical notation is avoided. Initial relations are 

automatically created when setting up the expectancy hierarchy (Fig. 2b). We 

expect that this eases the understanding of the basic structure of the expectancy 

relation. The manual addition of new relations is also based on drag-and-drop 

operations between the IS list (or the hierarchy view) and the fields of the rela-

tions to further reduce typing effort. 

 

Fig. 2. Tool screenshots. (a) Popup window for defining an IS group. (b) Hierarchy of ISs. 

(c) List of all ISs. (d) Three expressions of an expectancvy relation. (e) Relevance matrix. 
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4 Conclusion  

We presented a tool that supports all steps required to characterize optimal 

monitoring behavior. All actions that the users have to do are kept as simple as 

possible. In fact, besides the domain knowledge of the monitoring task we expect 

that very little knowledge about the underlying monitoring model is required. 

The calculation of expectancy and value coefficients is automatically done by the 

tool. The required domain knowledge is extracted by guiding the user through a 

series of actions. Each statement of the relation (c.f. Fig. 2d) or entry in the rele-

vance matrix captures a single aspect of the domain knowledge, e.g., “infor-

mation events occur more frequently in information source A than in information 

source B” or “information source C is helpful for performing task D”. The inte-

gration of all these statements in an overall model and the calculation of the re-

sulting coefficients is entirely performed within the tool.  

In a follow-up action, we will conduct a study in the automotive domain to test 

how valid the predictions of the users are. We will ask experienced drivers to 

characterize monitoring behavior in a set of different driving situation using our 

tool. We intend to only offer a short video tutorial to teach the participants the 

tool usage. In parallel a driving simulator study is conducted for all of these driv-

ing situations. The predicted attention distribution will be compared with drivers’ 

attention distribution measured with an eye tracker. Other studies [6, 15, 13] that 

used human factor experts and the lowest ordinal heuristic to calculate the value 

and expectancy coefficients reported correlation coefficients for percentage dwell 

times for all information sources in the range of 0.60 <= r <= 0.98. These studies 

were performed on a similar level of abstraction in realistic driving and flight 

simulators. On average over all participants we expect to achieve a correlation 

within this range. 
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